Top.Mail.Ru
Вход
Регистрация

SOLIDWORKS Flow Simulation: моделируем неоднородный поток воздуха, проходящий через пористое тело

SOLIDWORKS Flow Simulation: моделируем неоднородный поток воздуха, проходящий через пористое тело

SOLIDWORKS Flow Simulation: моделируем неоднородный поток воздуха, проходящий через пористое тело

Во многих отраслях науки и техники нередко возникает необходимость комплексного моделирования процессов в пористых средах. 

Допустим, вам необходимо смоделировать поток через керамическую мембрану определенной пористости и посмотреть как в зависимости от пористости будет происходить изменение скорости текучей среды. Или от вас требуется смоделировать и изучить влияние потока воздуха, проходящего через пористое тело. 

Еще лет тридцать-сорок назад вам пришлось бы вооружиться калькулятором и парочкой учебников по физике и стопкой научных статей. С развитием технологий и появлением специализированного ПО, жизнь инженеров существенно упростилась.  

SolidWorks Flow Simulation позволяет еще на этапе проектирования определить степень воздействия газа или жидкости на создаваемую продукцию. Программа моделирует потоки с различной скоростью и интенсивностью, благодаря чему сразу становятся видны места, подверженные наибольшему давлению текучей среды. Все найденные недочеты можно спрогнозировать и устранить непосредственно в программе.

Подробнее о решении похожих задач при помощи SOLIDWORKS Flow Simulation вы можете узнать в видео по ссылке.

Здесь же, используя данные из Справочника по гидравлическому сопротивлению И. Э. Идельчика, мы рассматриваем плоский поток холодного воздуха, проходящий между двумя параллельными пластинами через пористое тело, установленное между ними (Рис. 1). 

Flow Simulation__1.png

Рисунок 1. Выравнивающее действие пористого тела на неоднородный поток: 1 - воздушный поток, 2 - пористое тело

На входе в канал профиль скорости воздушного потока ступенчатый (заданный). Пористое тело (экран) выравнивает этот профиль до более однородного. Этот эффект зависит от перетаскивания экрана.

Геометрическая модель, используемая для расчета двумерного (в плоскости XY) потока, показана на рисунке 2. Канал имеет высоту 0,15 м, входную (перед пористым телом) часть длиной 0,3 м, пористое тело толщиной 0,01 м и выходную (после пористого тела) часть длиной 0,35 м. Все стены имеют толщину 0,01 м.

Flow Simulation__2.png

Рисунок 2. Геометрическая модель, используемая для расчета двухмерного потока между двумя параллельными пластинами через пористое тело с помощью Flow Simulation

Flow Simulation__3.png

Согласно экспериментам, представленным в Справочнике по гидравлическому сопротивлению, ступенчатые профили скорости V (Y), представленные на рисунке 3, заданы на входе в модель. На выходе модели задано статическое давление 1 атм.

Flow Simulation__рис.3.png

Рисунок 3. Профили скорости на входе

Теперь сравним три графика – первый, полученный в SOLIDWORKS Flow Simulation 2022, второй, по данным из Справочника и третий, полученный в более старой версии Flow Simulation. 

Flow Simulation__рис.4.png

Рисунок 4. Профили динамического давления при ζ = 0, предсказанные Flow Simulation и сравненные с экспериментами.

Flow Simulation__рис.5.png

Рисунок 5. Профили динамического давления при ζ = 0,95, предсказанные Flow Simulation и сравненные с экспериментами.

Flow Simulation__рис.6.png

Рисунок 6. Профили динамического давления при ζ = 1,2, предсказанные Flow Simulation и сравненные с экспериментами.

Flow Simulation__рис.7.png

Рисунок 7. Профили динамического давления при ζ = 2,8, предсказанные Flow Simulation и сравненные с экспериментами.

Flow Simulation__рис.8.png

Рисунок 8. Профили динамического давления при ζ = 4,1, предсказанные Flow Simulation и сравненные с экспериментами.

Видно, что прогнозы Flow Simulation как качественно, так и количественно хорошо согласуются с экспериментальными данными как в отсутствие тела, так и для всех рассматриваемых пористых тел, демонстрируя выравнивающий эффект сетчатых экранов на ступеньках, сформированных входящим потоком. 

При этом, данные, полученные в 2022 версии SOLIDWORKS Flow Simulation, лучше коррелируются с экспериментальными данными, в отличии от значений, полученных в более старой версии SOLIDWORKS Flow Simulation. Это достигается за счет улучшенного построения сетки на границе твердых тел и текучей среды, и других более незначительных улучшений, которые появляются с каждым годом при улучшении программы.



Самое читаемое

766 | Новости SyssoftРуководитель отдела общего ПО, Егор Трисеев, выступил на конференции «EvaConf 2024» с докладом «Перспективы развития рынка BPMS в России: опыт лидера по версии CNews 2022г» 646 | Новости вендоровКомпания «СайберПик» объявила о получении сертификата ФСТЭК России на DCAP/DAG решение «Спектр» 610 | Новости Syssoft«Системный софт» будет поставлять бизнесу корпоративный мессенджер Compass 578 | ВебинарыПереход на EvaTeam: онлайн мастер-класс по миграции с Atlassian 575 | Новости Syssoft«Системный софт» и производитель low-code платформы Scalaxi заключили соглашение о партнерстве 549 | Новости Syssoft«Системный софт» объявляет о получении серебряного статуса партнера SimpleOne 494 | Акции и скидкиБесплатное внедрение серверной виртуализации SpaceVM 411 | Новости вендоровСканер-ВС 6 получил сертификат ФСТЭК по 4-му уровню доверия 352 | Новости SyssoftРазработчик гиперконвергентной платформы vStack и «Системный софт» подписали соглашение о партнерстве 321 | ВебинарыПодготовка ЦИМ наружных сетей в nanoCAD GeoniCS к прохождению экспертизы 301 | Новости Syssoft«Системный софт» получил награду «Прорыв года» 297 | Новости вендоровНовая версия РЕД АДМ Промышленная редакция 1.1.1. 207 | ВебинарыUEM SafeMobile: управление мобильными устройствами и защита корпоративных данных 114 | Новости вендоров«МТС Линк» анонсировал новый корпоративный мессенджер «МТС Линк Чаты»